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ABSTRACT

R. M. Bevensee
University of California

Lawrence Livermore LaboratorY
P.O. 80X BOB, L-156

LiverMore, California 94550

liedescribe the applicationof a maximum entropy method

(HEM) not to spectral analysis but rather to inversion

of an underdeterminedconstitutfveparamster (electrical

conductivity,refractive index or reciprocal wave

velocity) profile in a two dimensionalregion probed by

ray data. In accord with the First Principle of Data

Reduction, we maximize the probability of the distribu-

tion subject to measurement constraints and consistent

totality of that parameter. An HEM algorithm is outlined

and examples given of the inversionof synthetic ray data

in a cel1 model of the earth. C~utatlonal properties

of the algorithm relative to convergence, ray redundanty

and noise in the ray data are described. Me extend logi-

cally the NW to include curved rays or to solve the more

clifficult problem of undergroundconductivity inversion

from surface potential measurements.

liebelieve the examples of this particular KEN

suggest an unsuspectedcapabi1ity for resolvtng two-

dimensional parameter profile anomelies frcm a minimum

of ray data. The success of our algorithm invites

further analysis and applicationto prectica”lfield

fnversiongroblems.

Work performed under the auspices of the U.S. Department
of Energy by the Lawrence Livermore Laboratory under
contract number U-7405-ENG-48.

1. HISTOAY

The t4EHhas been applled extensivelyto spectral analysis

since 1%7 when Burg[l] presented his classic paper. The

correspondence between the MEM spectral analysis and the

autoregressiverepresentationby least squares fittin

of a random process was established by van den Bos.[2;

Application has been made to spatial array data proces-

sing[3] and to time series andlysis of signals{4] to

infer the pamxeters of seismic events. NEM has been

. apPlied successfully to two dimensional digital image
reconstruction,[5] important in radio astronomy and

tomography. Our work is most closely related to the

latter work of inferring the properties of an object

frsm its noisy image, given the transmissionfunction.

2. PROBLEM

Our model of the ground is the two dimensionalcellular

one shoun in Fig. 1. Each of K square cells has its own

(unknown) value of scalar constitutiveparameter ok which

represents conductivity, refractive Index, or reciprocal

wave velocity. Straight rays such as the & one are

assumed to travel frc+na transmitterto a receiver. oik
is the known path length of ray i in cel1 k; the

measured ray datum Ti represents net attenuation,phase

shift, or travel time, respectively,along the ray path.

Our problem is to estimate the unknown distribution

Ok by ttk,1 ~ k ~ K, given the true Ti of I < K raYs

related to the ~k as

j, ‘fkak= ‘i* l~i~I<K, (1)

with or without noise in the Ti, subject to the First

Principle of Data Reduction[5]: ‘The result of any

transformation imposed on the experimentaldata shal1 in-
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Fig. 1. Two dimensionalmodel of the ground.
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corporate and be consistent with al1 relevant data and be

maximally nonconsnittalwith regard to unavailabledata,■

3. NAXIflJM ENTROPY SOL~TION

lieinvoke the artifIce of Imaginingeach cel1 constructed

of a vast number of building blocks of minute paraseeter

Aa, the @ cell containing n = o IAu blocks.
Jj

The

totality of blocks N = ~ nj is Initiallyregarded as

fixed, though later it will be adjusted in the algorithm

in accord with Eq. (l). (Au will not appear explicitly .

in the solution.) Me seek the nsxt probable distribution*
of the nk subject to the constraints of COMarN N and.

the measurements (1). Thus we maxfmize the logarithmof

the total number of combinations of distinct block
4

arrangements(entropy) subject to constraints. We use

Lagrange’smethod of undeterminedmultipliers y and

B! to maximize instead the function F of the ~i,

k:l ““ (2)

Differentiationrelative to the nk furnish K relations, ,

and the other 1+1 conditionsrequired for evaluating the

y and B; are the constraint relatfOnS.

The straightforwardsolution for the ~k = fikAuis as

follows. The Bi = 13~Aamust be found to satisfy the I

relations, 1 ~ j ~ 1,

1“kexp[f~lBiD’!/Jlexp[Jlsfofkl“Tj’%s(’)k=l

where f+ * ~ ~ls the total estimated ~.nt of

parameter in the volume and each ?Sjis given by

aj=%exp[,~,%o,j]/’’~kexp[),%O,k](4)

One can show that any set of variations &nj = 6ajl&s

about this distributionwhich maintafns the constraints

does not change entropy S, and that ?2S/~n~ < 0 for

all k (maximumentropy).

4. THE AL60RITtM

●

lieinvestigatedthe properties of the MEH solution, Eq.

(3)-(4), by specifying ‘true” a-distributionsof Interest

and computing for each of the synthetic ray data T1. We
.

made the following assumptions in solving

for each MEM &d{stribution:

(A) The true, ‘measured,’data Tf were Initially

uncorruptedby nofse or uncertalnty.

(B) The total-parametervalue 3T #as known to be

within 10% or so of the true one OT.

‘c) ‘he ‘ay path ‘ata DIj ‘ere a“ ‘nom ‘Xact’y
for the straight rays.

(0) The solution should start from a pure guess of

the ~-distrlbution (the bar denotes an array).

The algorithm ccsnputedconsecutively

(i) The estimates ?k from the B by Eq. (4).

(ii) The estimates Tj from the ~ by Eq. (3).

(iii) A correction to 6T by a factor obtained

the implied constraint

frcm

(5)

in which the left side is proportional to Oi

according to Eq. (3).

(iv) All the scaled ?i and 6j, scaled by the same

factor obtained in (iii).

(v) Values of the derivatives 3?i/a13j=

3?j/N3i obtained analyticallyfrmn Eq. (3r.

(vi) The changes N3j necessary to improve the

computed ray data ?i by solving the matrix of equations

by LU decc+npositionand back substitution,whereupon

Bi + Bi + IY3i,all I rays. (6b)

The algorittsnthen returned to step (i) and repeated the

100P iterativelyunti1 consecutive&- and ?-arrays

after step (i11) showed convergence to three sign1ficant
digits or better. ~ also converged to ~ tiiththis

accuracy in the examples.

For typical problems 1ike those descrihd next the

algorithm generally converged on the CDC 7600 computer

with the first or second choice of the initial

~-distribution (all zeroes, 0.5, or 1). Convergence

when it occurred was attained in fewer than ten

iterationsof the loop, with a fraction of a second

cccaputfngtime.

Despite the vastly underdetennlnednature of some of the

examples, the number of rays initially specifiedwas

reducible, as indicatedby the extremely smal1 magnitudes

(< 10-20, for example) of some of the pivot elements in

the triangularizationof the 3?/3S-matrixin steP (vi)

of the loop. Uhen the number of rays was reduced

sufficiently,no extremely smal1 pivot elements appeared

and the MEf4& and ?(=T) arrays were the Same as

before. We cannot provide any criteria with which to

test for reducibility,but its presence in practical

problems as indicated by the mathematical solution is

fortuitous from a data processing standpoint.

In some problems of significantlylarge volumes of high

o-contrast (see example 5.3) the convergenceregion for

the starting~-distribution was very sensit{ve to the

T-array and to noise imposed upon it. For such problems

it would be expedient to replace Eq. (6a) by a more

reftned, steepest-descentsmethod of improving~.



● ❆

☛

3

5. EXAMPLES

5.1 A 36-cell region (Fig. 2) probed by 20 rays, with

an irregular re9ion of ai = 3 contrasting slightly with

the outer region of IJj= 4. Resolution in the absence
of noise in the Ti is good, inasmuch as 8 of the 12

inner cells have their 3i within 0.2 of the true value of

3; 19 of the 24 outer cells are within 0.2 cf the .

correct value of 4.

Fig. 2. HEM 20-ray reconstruction of the u=4 outer
region and 0=3 inner region shown.

5.2 A 48-cell region (Fig. 3) probed initially by 32

rays, containing an isolated sharp anomaly of IJ= 50

in one cell and with ai = 5 in all the other cells,

The rays are those shown in Fig. 4, plus the seven

additional horizontal ones. The anmaly without noise

is sharply revealed; only one neighbor has ii a, of

moti than 10. Only 13 of the 47 outer cells have i3i

outside the range 4-6. This nunber of rays proved

reducible; with all the horizontal rays except the top

one removed, small pivot elements in step (vt) of the

algorithm tended not to appear, depending on the

starting ~. and the converged & and ?(=1) distributions

were unchanged.

Fig. 3.

,5.61 4,40 6.01 4.66 4.66 4.6a

,8,116,65 2.26 3.30 4.51 ale I

’476 5.32 5.ea 39.5 15.0 363’

,466 5.31 6.05 4.06 3.78 6131

,4,665.32 5.83 3.63 4,46 5.70

,4.76 5.32 5.93 3.49 4.71 5.77

,466 5.50 !j.643aa 4.56 5.74

,4,96 5,165.92 4.66 4.66 4,66,

MEM 25-ray reconstructionof a one-eel1
0=50 anomaly, surroundedby @ 5 cel1s.

5.3 A 48-cell region (Fig. 4), probed by the 25 rays

shown, with the 12 cells in the lower right corner of

Oi = 20 and the remainder of o = 5. Uithout noise the
j

corner anmnaly is sharply distinguishedfrom one block

of outer cells with the MEM value of ~i * 7.14 and the

remaining block of aj = 2.86.

In prictice the ray data Ti in Eq. (1) would be corrupted

by error or noise and we iwst assess the quantitative

effect upon the ak. Rather than write a noise constraint

explicitly into Eq. (2) we chose to create an ensemble of

solutions (?,o,~) for a given problem, one member being

the non-noise solution (To,~o,Eo) and each of the others

corresponding to an array of Ti al1 generated indepen-

dently as Tio(l-fn + 2fn%NO), fn being the fractional

noise specified and RND being a randcm number with a

uniform distribution over the interval (0,1). The
relative uncertainty Bi in ~i over this ensemble

was then defined for that fn “as

E’i = $ ~sftio, ./‘TTF”2 aio o (7)

The following

ensemble.

remarks refer to a 100-membernoise

i
!.. ...... ..... ..... .......}}.... ... .... ::’”-

1 I

. ..1.- 1
... Ikdww- “’1””””+.*..1

I I 1 I 1 I [

Fig. 4. MEM 2S-ray reconstructionof a 12-eel1
anomaly of IJ520,surrounded by 0=5 cel1s.

The results were instructivefor fn = 0.1 (10%

uncertainty in al1 the ray data, distributeduniformly).
in example 5.1 with a 3:4 contrast in ai the hi-values

were relatively large, being zO.2 in 31/36 of the

cells. According to Fig. 2, this noise would cause most

of the cel1s touching the o-discontinuityboundary to

have a range of uncertaintygreater than the discon-

tinuity in 0. The MEM resolutionwould be lost.

In example 5.2, with 25 rays defining a large

discontinuity in one cell lM noise in the ray data

blurred the discontinuitynegligibly. pi for the

30 = 39.5 cell was about .093; i.e.. 6 = 3g.5 2

3.7. The anomaly remained sharply defined. The

;i-value for the ~. = 15.82 cel1 next to the anomaly was

0.21, and many of the uncertaintiesin the other cel1s
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Iay In the range 0.4 ~ B, ~ 0.6. The cell just above

the anomaly had the highest l)+Of 0.79.

.
equations like (6), (iii) uodates the aV/aa array again,

(Iv) determines the I !3,from logarithmsof the erruatlons

analogous to (3), (v), obtafns all the &k from the 131

with equatfons like Eq. (4), and than (vi) returns to

step (i).

..

ExWle 5.3 represents an intermediatecase regardfng

sfze and contrast of the anomaly. The largest Bt of the

ttt= 7.14 cells was 0.80 (51 = 7.14 ~ 5.71); of the .

81 = 2.86 cells, 0.60 (?)l= 2.86 ~ 1.71); and of the

b, = 17.9 cells, 0.35 (at = 17.9 ~ 6.27). Thus the

high-a region remains sharply defined In the presence of

Preliminary numerical work indicates a capability of the

t4EHto dfstfngufsh a localfzed underground anomaly layer

of higher or lower conductivity than the neighbors.

10X uniformly distributed and uncorrelatednoise in all

the Tf.
7“

6. EXTENSIONS OF THE MEM [1]

1t appears that we could resolve the inverseproblem

with the additionalconstraint that the rays obey a [2]

ray-optic equation or Snell’s Law at discorltinuity

surfaces. To avoid the difficulty of defining and

cmput fng an integratedentropy density we could leave [3]
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reflections and the resultant multiple rays. Itwould
also prove convenient to ignore the informationcontained

“in the direction of approach of ●ach ray to 1ts recefver.

Ue have also applied the HEM to the difficult problem of

inferring an underground layered conductivityprofile

frsm surface voltage measurements. We studied a

“canonical”model 5 cells (and layers) deep and 8 cells

wide in Fig. 1, with a l-volt generator at surface node

3 and with the vertical and bottom planes ,itO volt.

The data points for surface voltage measurements v,

were taken at nodes 4, 5, and 7. The prob’lemis under-

d.$termined by one layer because 01 {n laye” 1. saY,

can be specified as reference and the relatfve Ui in the

other four layers computed from the three surface

voltages. The absolute level of the dl could then

be inferredfrom a surface resistivitymeasurement.

Refcrcncc to a company or product name does not imply approval or
recommendation of the product by the University of California or the U.S.
Department of Energy to the exclusion of others that may be suitable.
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0.Tha const nt rel ions are of the form [ii(a) -

!ri(fJ)]= o q. (2) d the MEM solution is valid

with aii(6)/a@ repld ng Oik and Vj replacing Tj in .

Eq.(2)-(4). $The bes algorithm to date appears to be

based on a looP which (i) cunputes the ii and a~i/a3j

frcm the

.u -

t rece timate itof o, (ii) updates the 6,

tn the to I 1ayer bring V closer to V, with

)

. .

——

‘“””T


